Iterative algorithms based on hybrid method and Cesàro mean of asymptotically nonexpansive mappings for equilibrium problems

نویسندگان

  • Jingxin Zhang
  • Yunan Cui
چکیده

Using Cesàro means of a mapping, we modify the progress of Mann’s iteration in hybrid method for asymptotically nonexpansive mappings in Hilbert spaces. Under suitable conditions, we prove that the iterative sequence converges strongly to a fixed point of an asymptotically nonexpansive mapping. We also introduce a new hybrid iterative scheme for finding a common element of the set of common fixed points of asymptotically nonexpansive mappings and the set of solutions of an equilibrium problem in Hilbert spaces. MSC: 47H10; 47J25; 90C33

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

A Hybrid Method for a Countable Family of Lipschitz Generalized Asymptotically Quasi-nonexpansive Mappings and an Equilibrium Problem

In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W -mappings of a countable family of ...

متن کامل

New hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces

In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...

متن کامل

Hybrid Iterative Algorithm of Asymptotically Non-expansive Mappings for Equilibrium Problems

Optimization problems, variational inequalities, minimax problems can be formulated as equilibrium problems. The iterative algorithms of fixed points are often applied to finding the solution of equilibrium problems. In this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of fixed points of asymptotically nonexpansive mappings and the set of solution...

متن کامل

A New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications

In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014